mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-24 15:36:25 +01:00
120 lines
3.4 KiB
Python
120 lines
3.4 KiB
Python
|
#!/usr/bin/python3
|
||
|
"""
|
||
|
Ensemble de fonctions permettant de visualiser
|
||
|
les différentes données disponibles dans le réseau de neurones
|
||
|
"""
|
||
|
import json
|
||
|
import math
|
||
|
import os
|
||
|
|
||
|
import png
|
||
|
from matplotlib import pyplot as plt
|
||
|
|
||
|
IMAGE_WIDTH = 28
|
||
|
IMAGE_HEIGHT = 28
|
||
|
|
||
|
def image_from_file(filepath, dest="./images/"):
|
||
|
"""
|
||
|
Enregistre un ensemble d'images au format PNG
|
||
|
à partir d'un fichier texte comprenant une liste d'images
|
||
|
chaque image étant un tableau de poids entre 0 et 255
|
||
|
"""
|
||
|
os.makedirs(dest, exist_ok=True)
|
||
|
with open(filepath, "r", encoding="utf8") as fp:
|
||
|
data = json.load(fp)
|
||
|
|
||
|
nb_elem = len(data)
|
||
|
for i in range(nb_elem):
|
||
|
png.from_array(data[i], 'L').save(os.path.join(dest, f"{i}.png"))
|
||
|
|
||
|
|
||
|
def image_from_list(filepath, dest="data.png", exp=False):
|
||
|
"""
|
||
|
Enregistre une liste de poids sous forme d'une image
|
||
|
exp sert à spécifier si il faut passer à une forme exponentielle
|
||
|
afin de mieux distinguer les points prédominants.
|
||
|
"""
|
||
|
with open(filepath, "r", encoding="utf8") as fp:
|
||
|
data = json.load(fp)
|
||
|
|
||
|
mini = min(data)
|
||
|
data = [i-mini for i in data] # Set min to 0
|
||
|
|
||
|
maxi = max(data)
|
||
|
if exp:
|
||
|
ratio = 255/math.exp(maxi)
|
||
|
data = [int(math.exp(i)*ratio) for i in data]
|
||
|
else:
|
||
|
ratio = 255/maxi
|
||
|
data = [int(i*ratio) for i in data]
|
||
|
|
||
|
new_data = [[0 for i in range(IMAGE_WIDTH)] for j in range(IMAGE_HEIGHT)]
|
||
|
|
||
|
for i in range(IMAGE_WIDTH):
|
||
|
for j in range(IMAGE_HEIGHT):
|
||
|
new_data[i][j] = data[i*IMAGE_HEIGHT+j]
|
||
|
|
||
|
png.from_array(new_data, 'L').save(dest)
|
||
|
|
||
|
|
||
|
def graph_from_test_reseau(erreurs, reussites):
|
||
|
"""
|
||
|
Affiche un graphique à partir d'un fichier contenant les
|
||
|
réussites et d'un autre contenant les erreurs (sortie brutes de out/main)
|
||
|
"""
|
||
|
with open(erreurs, "r", encoding="utf8") as f:
|
||
|
data = f.read()
|
||
|
|
||
|
data = data.split("--- Image")[1:]
|
||
|
data = [i.split("\n")[:IMAGE_HEIGHT] for i in data]
|
||
|
labels = []
|
||
|
for i in data:
|
||
|
labels.append((int(i[0].split(",")[1][1]), int(i[0][-5])))
|
||
|
|
||
|
data = [[float(j[IMAGE_HEIGHT+5:]) for j in i if j[IMAGE_HEIGHT+5:] != ''] for i in data]
|
||
|
|
||
|
x = []
|
||
|
y = []
|
||
|
|
||
|
for i, label in enumerate(labels):
|
||
|
x.append(data[i][label[0]])
|
||
|
y.append(data[i][label[1]])
|
||
|
|
||
|
plt.plot(x, y, "+r")
|
||
|
|
||
|
with open(reussites, "r", encoding="utf8") as f:
|
||
|
data = f.read()
|
||
|
|
||
|
data = data.split("--- Image")[1:]
|
||
|
data = [i.split("\n")[:IMAGE_HEIGHT] for i in data]
|
||
|
labels = []
|
||
|
for i in data:
|
||
|
labels.append((int(i[0].split(",")[1][1]), int(i[0][-5])))
|
||
|
|
||
|
data = [[float(j[IMAGE_HEIGHT+5:]) for j in i if j[IMAGE_HEIGHT+5:] != ''] for i in data]
|
||
|
|
||
|
x = []
|
||
|
y = []
|
||
|
|
||
|
for i, label in enumerate(labels):
|
||
|
x.append(data[i][label[0]])
|
||
|
y.append(data[i][label[1]])
|
||
|
|
||
|
plt.plot(x, y, "+b")
|
||
|
plt.xlabel("Réel")
|
||
|
plt.ylabel("Prévision")
|
||
|
plt.legend()
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def images_neurons(neurons, dest="neurons", exp=False):
|
||
|
"""
|
||
|
Appelle le programme C ainsi que la fonction image_from_list
|
||
|
Afin de créer un ensemble d'image visualisant les poids
|
||
|
"""
|
||
|
os.makedirs(dest, exist_ok=True)
|
||
|
for i in neurons:
|
||
|
os.system(f"./make.sh utils print-poids-neurone --reseau \
|
||
|
.cache/reseau.bin --neurone {i} > .cache/poids.txt")
|
||
|
image_from_list(".cache/poids.txt", os.path.join(dest, f"{i}.png"), exp=exp)
|