Compare commits

...

2 Commits

Author SHA1 Message Date
ae884cc04a Add custom model 2024-10-14 13:33:01 +02:00
86cc497a99 Create dirs 2024-10-14 12:02:51 +02:00
5 changed files with 72 additions and 1 deletions

View File

@ -1,3 +1,19 @@
# [Cemantix](https://cemantix.certitudes.org/) CLI (fully local) # [Cemantix](https://cemantix.certitudes.org/) CLI (fully local)
Download models at [Jean-Philippe Fauconnier's website](https://fauconnier.github.io/#data) (`frWac_non_lem_no_postag_no_phrase_200_skip_cut100.bin` recommanded) # Basic use
```bash
python cemantix.py -m <model.bin>
> # input your guess
> # help() to get an hint
> # clear() to remove words that are not useful
```
# Models
Les modèles de base viennent du [site de Jean-Philippe Fauconnier](https://fauconnier.github.io/#data)
Le modèle recommandé est disponible [ici]() et est une modification de `frWac_non_lem_no_postag_no_phrase_200_skip_cut100.bin`.
Les mots qui ne sont pas dans le dictionnaire, les verbes conjugués et autres ont été supprimés.
Il est possible de recréer ce modèle avec `src/generate_wordlist.py` et `src/restrict_model.py` et [ce dictionnaire français](https://github.com/hbenbel/French-Dictionary)

0
models/.gitkeep Normal file
View File

29
src/generate_wordlist.py Normal file
View File

@ -0,0 +1,29 @@
"""
Generate a wordlist from https://github.com/hbenbel/French-Dictionary
"""
FRENCH_DICT = "French-Dictionary" # path to https://github.com/hbenbel/French-Dictionary downloaded repo
OUTPUT = f"{FRENCH_DICT}/output.txt"
pos_to_keep = ['adj', 'adv', 'noun', 'prep', 'verb']
banned = " -_'.:01234556789AZERTYUIOPQSDFGHJKLMWXCVBN"
with open(OUTPUT, "w") as f:
f.write("")
with open(OUTPUT, "a") as fop:
for file in pos_to_keep:
with open(f"{FRENCH_DICT}/dictionary/"+file+".csv", "r") as fp:
for line in fp:
l = line.split(",")
form, tags = l[0], ",".join(l[1:])
if form == "form":
continue
if file == "verb":
if "infinitive" not in tags:
continue
if "plural" in tags or "feminine" in tags or len(form) <= 2 or any([i in form for i in banned]):
continue
fop.write(f"{form}\n")

26
src/restrict_model.py Normal file
View File

@ -0,0 +1,26 @@
from gensim.models import KeyedVectors
BASE_MODEL = "models/frWac_non_lem_no_postag_no_phrase_200_skip_cut100.bin"
WORD_LIST = "French-Dictionary/output.txt"
NEW_MODEL = "models/selected_word2vec_model.bin"
model = KeyedVectors.load_word2vec_format(
BASE_MODEL,
binary=True,
unicode_errors="ignore"
)
with open(WORD_LIST, "r") as f:
selected_words = f.read().split("\n")
selected_words = selected_words[:-1]
new_model = KeyedVectors(vector_size=model.vector_size)
intersect = []
for word in selected_words:
if word in model:
intersect.append(word)
new_model.add_vectors(intersect, [model[word] for word in intersect])
new_model.fill_norms()
new_model.save_word2vec_format(NEW_MODEL, binary=True)