141 lines
4.0 KiB
Python
141 lines
4.0 KiB
Python
from collections.abc import Mapping
|
|
from typing import TypeVar, Optional, Iterator, Generic
|
|
import networkx as nx
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
class Graph(Mapping, Generic[T]):
|
|
"""Non oriented graph"""
|
|
def __init__(self) -> None:
|
|
self._edges: dict = {}
|
|
|
|
def __str__(self) -> str:
|
|
return "\n".join(
|
|
(f"{key} -> {self._edges[key]}" for key in self._edges)
|
|
)
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._edges)
|
|
|
|
def __getitem__(self, e) -> list[tuple[T, int]]:
|
|
return self._edges[e]
|
|
|
|
def __iter__(self) -> Iterator[object]:
|
|
return iter(self._edges)
|
|
|
|
def __contains__(self, item: object) -> bool:
|
|
return item in self._edges.keys()
|
|
|
|
def add_node(self, u: T) -> None:
|
|
if u in self._edges.keys():
|
|
raise IndexError
|
|
|
|
self._edges[u] = set()
|
|
|
|
def add_edge(self, source: T, target: T, weight=None) -> None:
|
|
if source not in self._edges:
|
|
self.add_node(source)
|
|
|
|
if target not in self._edges:
|
|
self.add_node(target)
|
|
|
|
if weight is None:
|
|
weight = 1
|
|
|
|
self._edges[source].add((target, weight))
|
|
self._edges[target].add((source, weight))
|
|
|
|
|
|
def remove_edges(self, source: T, target: T) -> None:
|
|
for vertice in frozenset(self._edges[source]):
|
|
if vertice[0] == target:
|
|
self._edges[source] -= {vertice}
|
|
|
|
for vertice in frozenset(self._edges[target]):
|
|
if vertice[0] == source:
|
|
self._edges[target] -= {vertice}
|
|
|
|
|
|
def remove_node(self, u: T) -> None:
|
|
if u not in self:
|
|
raise IndexError
|
|
|
|
for node in self:
|
|
self.remove_edges(u, node)
|
|
|
|
self._edges.pop(u, None)
|
|
|
|
def compress(self) -> None:
|
|
"""Remove nodes that have only 2 edges to get a minimal representation"""
|
|
initial_size = len(self)
|
|
for node in self._edges.copy():
|
|
if len(self[node]) == 2:
|
|
weight = sum((edge[1] for edge in self[node]))
|
|
self.add_edge(list(self[node])[0][0], list(self[node])[1][0], weight=weight)
|
|
self.remove_node(node)
|
|
|
|
return len(self)/initial_size
|
|
|
|
|
|
def bellman_ford(self, source: T) -> \
|
|
tuple[dict[T, int], dict[T, Optional[T]]]:
|
|
# Initialize distances and predecessors
|
|
dist_max = len(self)*max(
|
|
{max({j[1] for j in i}) for i in self._edges.values()}
|
|
)
|
|
distances = {node: dist_max for node in self._edges}
|
|
predecessors = {
|
|
node: None for node in self._edges
|
|
} # ! The only problem is here for the typing system
|
|
distances[source] = 0
|
|
|
|
# Relax edges repeatedly to find the shortest paths
|
|
for _ in range(len(self._edges) - 1):
|
|
for u in self._edges:
|
|
for v, weight in self._edges[u]:
|
|
if distances[u] + weight < distances[v]:
|
|
distances[v] = distances[u] + weight
|
|
predecessors[v] = u
|
|
|
|
# Check for negative cycles
|
|
for u in self._edges:
|
|
for v, weight in self._edges[u]:
|
|
if distances[u] + weight < distances[v]:
|
|
raise ValueError("Graph contains a negative cycle")
|
|
|
|
return distances, predecessors
|
|
|
|
def networkx(self):
|
|
g = nx.Graph()
|
|
g.add_nodes_from(self)
|
|
for node in self:
|
|
for dest, _ in self[node]:
|
|
g.add_edge(node, dest)
|
|
|
|
return g
|
|
|
|
def dfs(self, node, views=None):
|
|
if views is None:
|
|
views = set()
|
|
|
|
views.add(node)
|
|
if node in self:
|
|
for v, _ in self[node]:
|
|
if v not in views:
|
|
views = views | self.dfs(v, views=views)
|
|
return views
|
|
|
|
def connexes(self):
|
|
views = set()
|
|
|
|
ccs = []
|
|
for node in self:
|
|
if node not in views:
|
|
cur_views = self.dfs(node)
|
|
ccs.append(cur_views)
|
|
views = views | cur_views
|
|
|
|
return ccs |